3.103 \(\int (a+a \sec (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=66 \[ \frac{2 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{2 a^2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(2*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*Tan[c + d*x])/(d*Sqrt[a + a*Sec
[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0368724, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {3775, 21, 3774, 203} \[ \frac{2 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}+\frac{2 a^2 \tan (c+d x)}{d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*a^(3/2)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^2*Tan[c + d*x])/(d*Sqrt[a + a*Sec
[c + d*x]])

Rule 3775

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Simp[(b^2*Cot[c + d*x]*(a + b*Csc[c + d*x])^(n
- 2))/(d*(n - 1)), x] + Dist[a/(n - 1), Int[(a + b*Csc[c + d*x])^(n - 2)*(a*(n - 1) + b*(3*n - 4)*Csc[c + d*x]
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^{3/2} \, dx &=\frac{2 a^2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+(2 a) \int \frac{\frac{a}{2}+\frac{1}{2} a \sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 a^2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}+a \int \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{2 a^2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{2 a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}+\frac{2 a^2 \tan (c+d x)}{d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.212093, size = 75, normalized size = 1.14 \[ \frac{a \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right )+\sqrt{2} \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right ) \sqrt{\cos (c+d x)}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(a*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] +
2*Sin[(c + d*x)/2]))/d

________________________________________________________________________________________

Maple [B]  time = 0.147, size = 181, normalized size = 2.7 \begin{align*}{\frac{a}{d \left ( \cos \left ( dx+c \right ) +1 \right ) } \left ( -\cos \left ( dx+c \right ) \sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( dx+c \right ) }{2\,\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}-\sqrt{2}{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( dx+c \right ) }{2\,\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}+2\,\sin \left ( dx+c \right ) \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2),x)

[Out]

1/d*a*(-cos(d*x+c)*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/
cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*sin(d*x+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/(cos(d*x+c)
+1)

________________________________________________________________________________________

Maxima [B]  time = 2.022, size = 1346, normalized size = 20.39 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/2*((a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(
2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(si
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*
(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
)) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.72774, size = 620, normalized size = 9.39 \begin{align*} \left [\frac{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, a \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d}, -\frac{2 \,{\left ({\left (a \cos \left (d x + c\right ) + a\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) - a \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{d \cos \left (d x + c\right ) + d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[((a*cos(d*x + c) + a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c
os(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sin(d*x + c))/(d*cos(d*x + c) + d), -2*((a*cos(d*x + c) + a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - a*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos
(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \sec{\left (c + d x \right )} + a\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((a*sec(c + d*x) + a)**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError